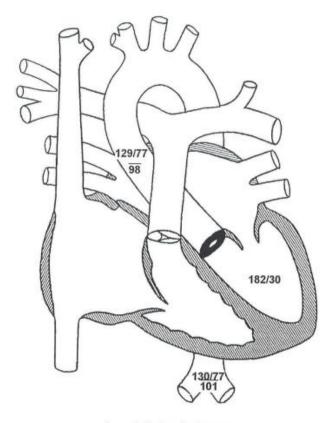
Case

• 15-year-old boy with bicuspid AV
 • Severe AR with moderate AS
 Ross vs. AVR (or AVP)

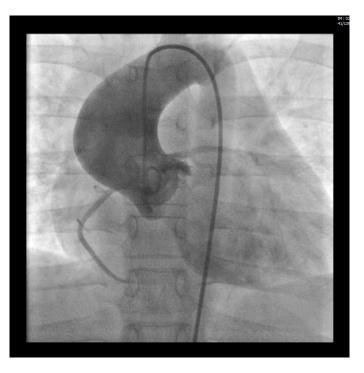

AMC case

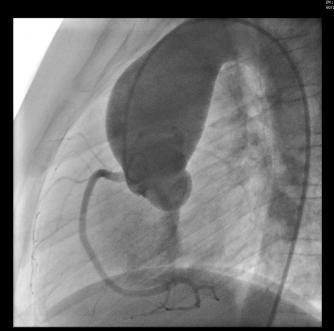
- 14-year-old boy with bicuspid AV
- Severe AS with mild AR
- Body size
 Bwt: 55 kg, Ht: 154 cm, BSA: 1.53 m²
- Echocardiography AS: velocity 4 m/sec, Mild AR (II/IV) AV annulus: 20 mm, PV annulus: 21 mm Mild LVH

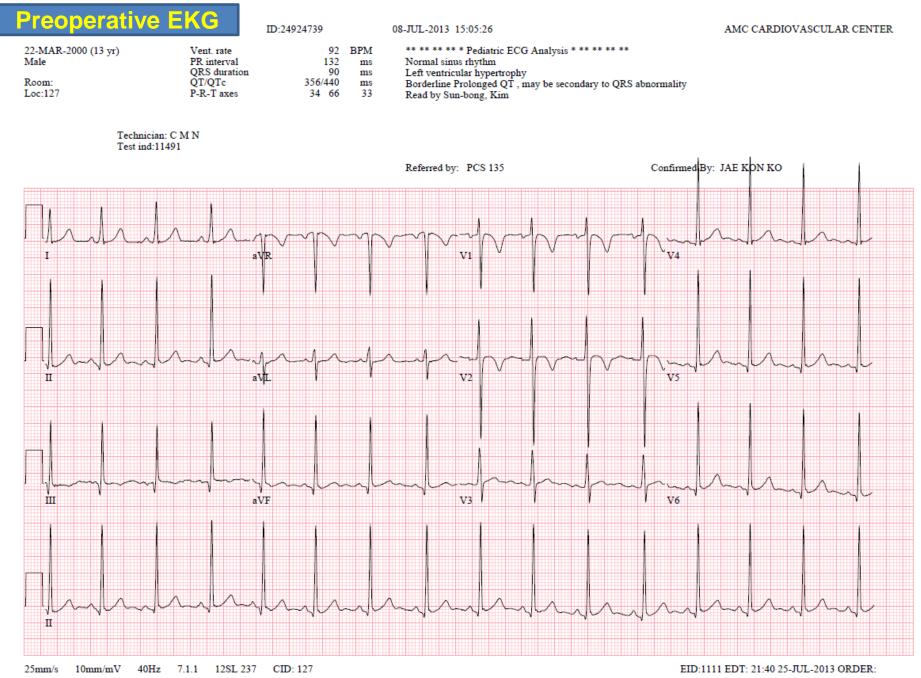
Asan Medical Center

Department of Pediatric Cardiology Cardiac Catheterization Laboratory

Arrows indicate catheter course.


Diagnoses / Procedures


BAV, AS

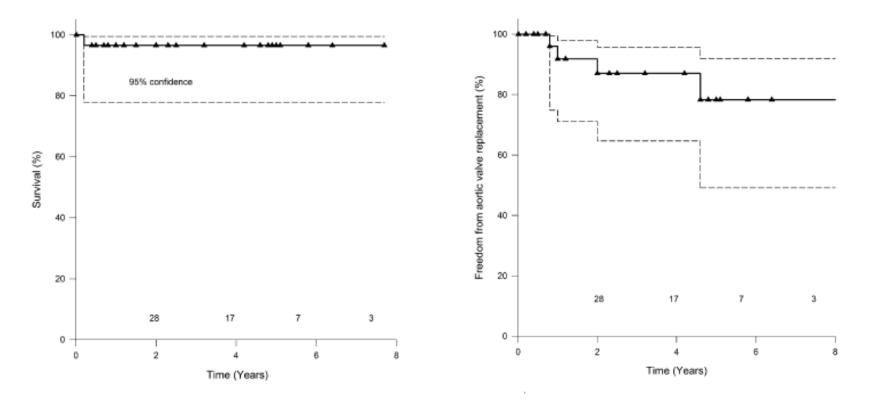

Comments

Angiography LV(AP/LAT) aortic valve stenosis, doming(+) post stenotic dilatation, 38mm aortic regurgitation, moderate

Pressure LV-Ao 185-125 = 60mmHg

Surgical options

- Aortic valve repair
 1) Definitive Treatment
 2) Bridge procedure for later AVR
- Aortic valve replacement


 Autograft PV (Ross procedure)
 Bioprosthetic valve or homograft
 Mechanical valve

ORIGINAL ARTICLE

Progression of Aortic Regurgitation After Different Repair Techniques for Congenital Aortic Valve Stenosis

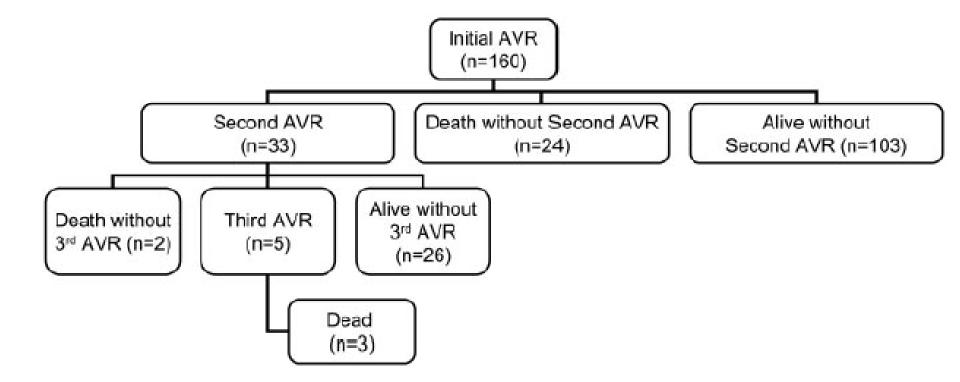
Fabian A. Kari¹ · Johannes Kroll¹ · Jan Kiss¹ · Carolin Hess¹ · Brigitte Stiller² · Matthias Siepe¹ · Friedhelm Beyersdorf¹

Pediatric Cardiology

Outcomes and Associated Risk Factors for Aortic Valve Replacement in 160 Children

A Competing-Risks Analysis

Tara Karamlou, MD; Karen Jang, MS; William G. Williams, MD; Christopher A. Caldarone, MD; Glen Van Arsdell, MD; John G. Coles, MD; Brian W. McCrindle, MD, MPH


- *Background*—We sought to define patient characteristics, outcomes, and associated risk factors after aortic valve replacement (AVR) in children.
- *Methods and Results*—Clinical records from children undergoing AVR from 1974 to 2004 at our institution were reviewed. Competing-risks methodology determined the time-related prevalence of 3 mutually exclusive end states: death, repeated replacement, and survival without subsequent AVR and their associated risk factors. Longitudinal echocardiographic data were analyzed by mixed linear-regression models. Children (n=160) underwent 198 AVRs, with 33 having >1. Competing-risks analysis predicted that 10 years from the initial AVR, 19% had died without subsequent AVR, 34% underwent a second AVR, and 47% remained alive without replacement. Risk factors for death without a second AVR included lower weight (P<0.001) and younger age at AVR (P=0.04), performance of aortic arch reconstruction together with AVR (P=0.03), and nonautograft use (P=0.03). Risk factors for a second AVR included earlier operation year (P=0.04) and implantation of a bioprosthetic or homograft valve (P=0.004). Analysis of serial echocardiographic measurements showed that pulmonary autograft use was associated with slower progression of peak aortic gradient (P=0.002), smaller left ventricular dimension (P=0.04), and decreased prevalence of aortic regurgitation (P=0.04).
- *Conclusions*—Mortality and repeated valve replacement are common after initial AVR in children, especially in younger patients and those with bioprosthetic or homograft valves. Pulmonary autograft use is associated with decreased mortality, slower gradient progression, and smaller left ventricular dimension. (*Circulation.* 2005;112:3462-3469.)

Key Words: heart defects, congenital ■ follow-up studies ■ pediatrics ■ aortic valve ■ valvuloplasty

Pediatric Cardiology

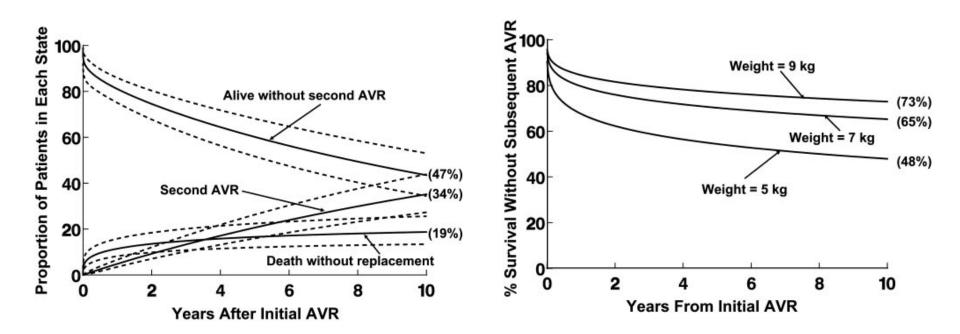
Outcomes and Associated Risk Factors for Aortic Valve Replacement in 160 Children A Competing-Risks Analysis

Tara Karamlou, MD; Karen Jang, MS; William G. Williams, MD; Christopher A. Caldarone, MD; Glen Van Arsdell, MD; John G. Coles, MD; Brian W. McCrindle, MD, MPH

TABLE 1. Patient Characteristics (n=160)

Variable	Value	No. Missing
Demographic characteristics		
Sex, female:male, n:n	59:101	0
Noncardiac anomaly	20 (13)	0
Previous LVOT procedure	100 (63)	0
Open valvotomy	39 (24)	0
Open valvuloplasty	9 (6)	0
Balloon valvotomy	15 (9)	0
Ventricular septal defect (associated with aortic insufficiency) closure	7 (4)	0
Subaortic resection	6 (4)	0
Other	24 (15)	0
Morphological characteristics		
Etiology of aortic valve disease		
Congenital	133 (84)	1
Rheumatic	10 (6)	1
Ascending aortic aneurysm	8 (5)	1
Endocarditis	3 (2)	1
Predominant valve physiology		
Stenosis	33 (21)	3
Insufficiency	72 (46)	3
Combined stenosis+insufficiency	52 (33)	3
Major associated cardiac anomalies		
None: isolated aortic disease	77 (48)	1
Mitral valve anomaly	36 (23)	1
Ventricular septal defect	11 (7)	1
Coarctation of the aorta	7 (4)	1
Truncus arteriosus	6 (4)	1
Shone's syndrome	6 (4)	1
Atrial septal defect	4 (3)	1
Atrioventricular septal defect	3 (2)	1
Double-outlet right ventricle	1 (1)	1
Transposition of the great arteries	1 (1)	1

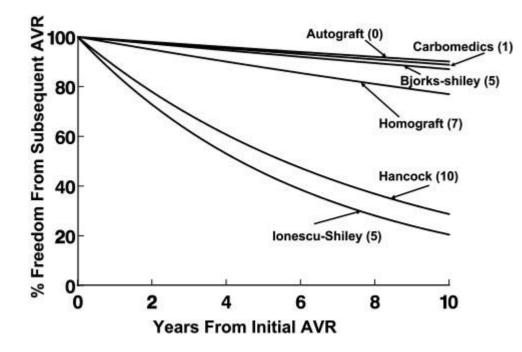
TABLE 2.Procedural Characteristics at Initial and SubsequentAVRs Combined (n=198 Procedures in 160 Patients)


Variable	n	Missing	Value
Median age at AVR, y (range)	198	0	12 (0 to 28)
Median weight at AVR, kg (range)	186	12	40 (0 to 180)
Mean duration of cardiopulmonary bypass, min, $\pm \text{SD}$	182	16	166±55
Mean duration of aortic cross clamping, min, $\pm \text{SD}$	173	25	124±72
Type of AV replacement, n (%)	185	13	
Bjork-Shiley			45 (24)
St. Jude Medical			35 (19)
Pulmonary autograft			31 (17)
Allograft			30 (16)
Hancock			15 (8)
lonescu-Shiley			10 (5)
Carbomedics			9 (5)
Carpentier-Edwards			5 (3)
Other mechanical			5 (3)
Mean size of AV implant, mm, \pm SD	186	12	23±4
Bjork-Shiley			23±3
St. Jude Medical			23±4
Pulmonary autograft			20±6
Allograft			19±3
Hancock			24±4
lonescu-Shiley			21±4
Carbomedics			22±4
Carpentier-Edwards			25±2
Other mechanical			23±3
Mean Z-score of AV prosthesis, \pm SD	186	12	4±2

Values are n (%) unless otherwise noted.

Pediatric Cardiology

Outcomes and Associated Risk Factors for Aortic Valve Replacement in 160 Children A Competing-Risks Analysis


Tara Karamlou, MD; Karen Jang, MS; William G. Williams, MD; Christopher A. Caldarone, MD; Glen Van Arsdell, MD; John G. Coles, MD; Brian W. McCrindle, MD, MPH

Pediatric Cardiology

Outcomes and Associated Risk Factors for Aortic Valve Replacement in 160 Children A Competing-Risks Analysis

Tara Karamlou, MD; Karen Jang, MS; William G. Williams, MD; Christopher A. Caldarone, MD; Glen Van Arsdell, MD; John G. Coles, MD; Brian W. McCrindle, MD, MPH

Figure 5. Freedom from reoperation after initial AVR stratified by prosthetic type. A multivariable equation was constructed for remaining alive after initial AVR without subsequent valve replacement according to the original competing risk model and forcing all valve types into the equation. The resulting model was then solved for a hypothetical 10-year-old patient of 40 kg undergoing operation in 1990. The autograft has superior longevity, whereas the tissue valves and allografts have considerably worse durability. The numbers in parentheses represent the total number of AVR episodes for each prosthesis type.

Bahaaldin Alsoufi, MD,^a Zohair Al-Halees, MD,^a Cedric Manlhiot, BSc,^b Brian W. McCrindle, MD, MPH,^b Mamdouh Al-Ahmadi, MD,^a Ahmed Sallehuddin, MD,^a Charles C. Canver, MD,^a Ziad Bulbul, MD,^a Mansoor Joufan, MD,^a and Bahaa Fadel, MD^a

Objective: We aimed to identify characteristics differentiating children undergoing aortic valve replacement by using mechanical prostheses versus the Ross procedure and to compare survival and the need for aortic valve reoperation after each procedure.

Methods: From 1983 to 2004, 346 children underwent aortic valve replacement (215 underwent the Ross procedure and 131 underwent placement of a mechanical prosthesis). Factors associated with procedure choice were used to construct a propensity score for use as a covariate in regression models to adjust for potential confounding by indication.

Results: Patients undergoing the Ross procedure were younger, more likely to have a congenital cause, and less likely to have a rheumatic or connective tissue cause. They had a lower frequency of regurgitation, required more annular enlargement, and had less concomitant cardiac surgery. Competing-risk analysis showed that 16 years after aortic valve replacement, 20% of patients had died without subsequent aortic valve replacement, 25% underwent second aortic valve replacement, and 55% remained alive without further replacement. After propensity adjustment, factors associated with early-phase death included mechanical valves and a nonrheumatic cause. Mechanical valves were also associated with constant-phase mortality. Repeated aortic valve replacement was associated with the Ross procedure and a rheumatic cause. Both factors were also associated with all-cause cardiac reoperation. In children receiving mechanical prostheses, younger age and smaller valve size were significant risk factors for death. Freedom from homograft replacement after the Ross procedure was 82% at 16 years of follow-up.

Conclusion: Results from this study showed good outcomes and an acceptable complication rate with both valve choices. Given the significantly increased risk of early and late death in younger children receiving smaller mechanical valves, the Ross procedure confers survival advantage in this age group at the expense of increased reoperation risk, especially in patients with a rheumatic cause.

The Journal of Thoracic and Cardiovascular Surgery c February 2009

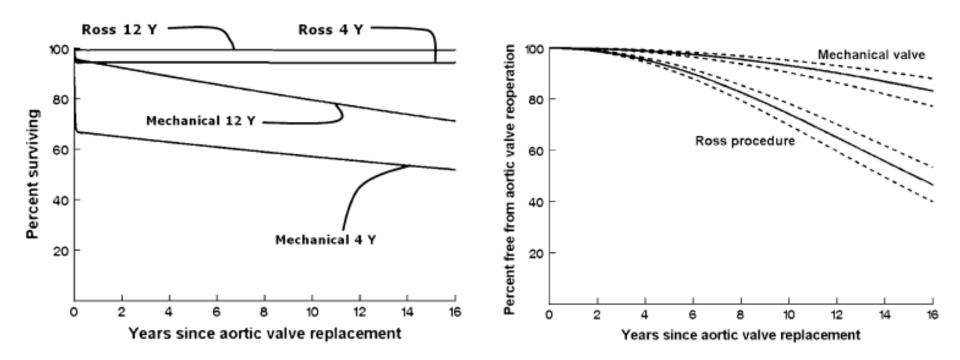

	Cohort (n = 346)	Mechanical prosthesis ($n = 131 [38\%]$)	Ross procedure (n = 215 $[62\%]$)	P value
Sex (male)	260 (75%)	109 (83%)	151 (70%)	.007
Mean age at surgical intervention (y)	12.4 ± 4.4	14.0 ± 3.8	11.4 ± 4.6	<.0001
Median year at presentation	1998 (1983-2005)	1996 (1983-2005)	1999 (1991-2004)	<.0001
Cause				
Rheumatic	201 (58%)	97 (74%)	104 (48%)	<.0001
Congenital	116 (34%)	15 (11%)	101 (47%)	<.0001
Connective tissue	14 (4%)	12 (9%)	2 (1%)	<.0001
Endocarditis	15 (4%)	7 (5%)	8 (4%)	.59
Hemodynamic manifestation				
Stenosis	44 (13%)	8 (6%)	36 (17%)	.005
Regurgitation	224 (65%)	115 (88%)	109 (49%)	<.0001
Mixed	78 (22%)	8 (6%)	70 (33%)	<.0001
Previous percutaneous intervention	20 (6%)	0(0%)	20 (9%)	<.0001
Previous cardiac operation	97 (28%)	41 (31%)	56 (26%)	.33
One previous operation	89 (26%)	36 (27%)	53 (25%)	
Two previous operations	8 (2%)	5 (4%)	3 (1%)	
Concomitant cardiac operation	147 (42%)	97 (74%)	50 (23%)	<.0001
Arch repair	5(1%)	4 (3%)	1 (<1%)	.07
Left ventricular outflow tract enlargement	35 (16%)	3 (2%)	32 (15%)	< 0.0001

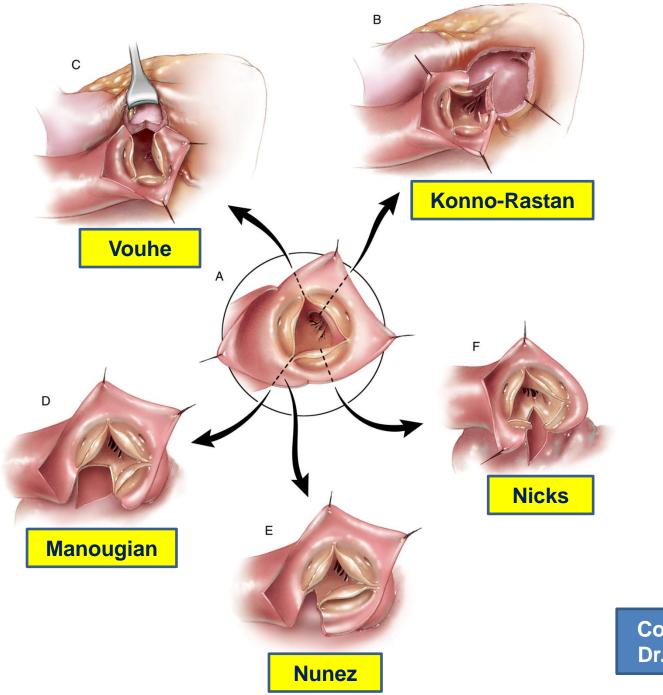
TABLE 1. Patients' characteristics

	Unadjusted		Propensity adjusted	
	Estimate ± SE	P value	Estimate ± SE	P value
Death without subsequent AVR: Early phase				
Valve type (mechanical vs Ross)	2.05 ± 0.57	.0004	2.71 ± 0.70	.0001
Cause other than rheumatic	1.75 ± 0.77	.03	2.10 ± 0.69	.003
Younger age at surgical intervention	0.12 ± 0.05	.03		
Death without subsequent AVR: Constant phase				
Valve type (mechanical vs Ross)	1.60 ± 0.58	.007	1.72 ± 0.65	.009
Concomitant operations	2.74 ± 1.01	.007		
Survival to a subsequent AVR: Late phase				
Valve type (Ross vs mechanical)	2.72 ± 0.48	<.0001	2.47 ± 0.47	<.0001
Rheumatic cause	1.92 ± 0.62	.002	2.09 ± 0.61	.0006
Concomitant cardiac surgery	0.91 ± 0.38	.02		

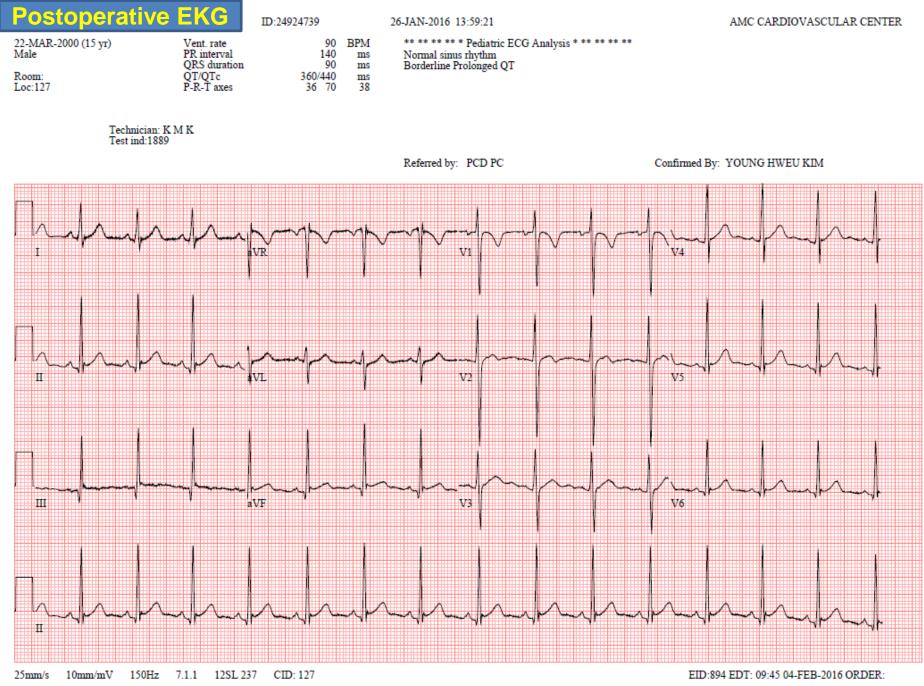
TABLE 2. Incremental risk factors for time-related transition from initial AVR to either death or a second AVR

AVR, Aortic valve replacement; SE, standard error.

Operative Details


Detailed steps of the surgical intervention will not be discussed in this section; however, some important information will be briefly listed.4 Midline sternotomy was performed, and standard cardiopulmonary bypass and myocardial protection techniques were used in all cases. For AVR with a mechanical prosthesis, the valve was secured to the annulus with multiple mattressed sutures, with the pledgets placed at the ventricular aspect of the annulus. For the Ross procedure, the pulmonary autograft was implanted as a full root, with coronary transfer in all cases. The autograft muscle cuff was trimmed with sutures placed almost directly at the autograft annulus. The proximal suture line was performed with running polypropylene sutures. The neoaortic annulus was not reinforced in these patients, so as not to limit growth. In patients with left ventricular outflow tract (LVOT) obstruction, a modified Ross-Konno technique was used. Part of the septum was cored out to completely open up the LVOT without creating a large ventricular septal defect. In those patients the fibrous annulus of the aortic valve was often divided, and the cut was partially taken down to the septum. In our current practice, in patients with a dilated aortic annulus of greater than 29 to 30 mm or with an aortic annulus 2 to 3 mm larger than the pulmonary valve annulus, the Ross procedure is not considered, and we rarely use any aortic annulus reduction techniques. The distal suture line was occasionally reinforced with Teflon felt in patients with a dilated ascending aorta. The immediate postoperative results were assessed in all patients in the operating room by means of transesophageal echocardiographic analysis.

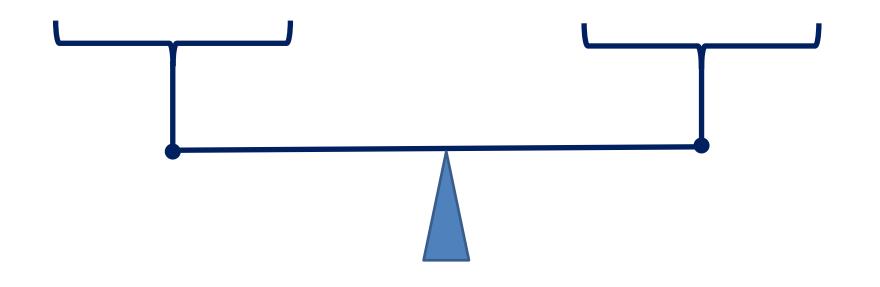
AMC case


- 14-year-old boy with bicuspid AV
- Severe AS with mild AR
- Body size
 Bwt: 55 kg, Ht: 154 cm, BSA: 1.53 m²
- Echocardiography AS: velocity 4 m/sec, Mild AR (II/IV) AV annulus: 20 mm, PV annulus: 21 mm Mild LVH

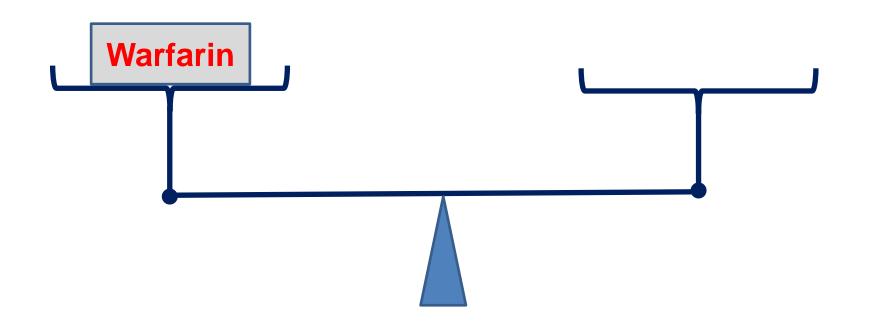
Operation

 AVR with AV annulus enlargement
 1) AV annular enlargement using bovine pericardium (Manougian)
 2) AVR with Saint-Jude supra-annular Regent valve (21 mm)

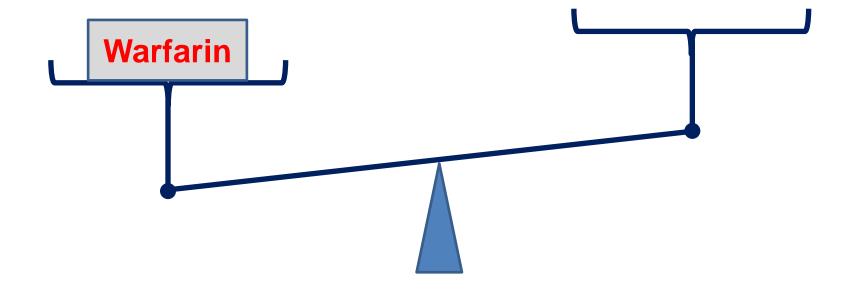
Courtesy of Dr. Park HK

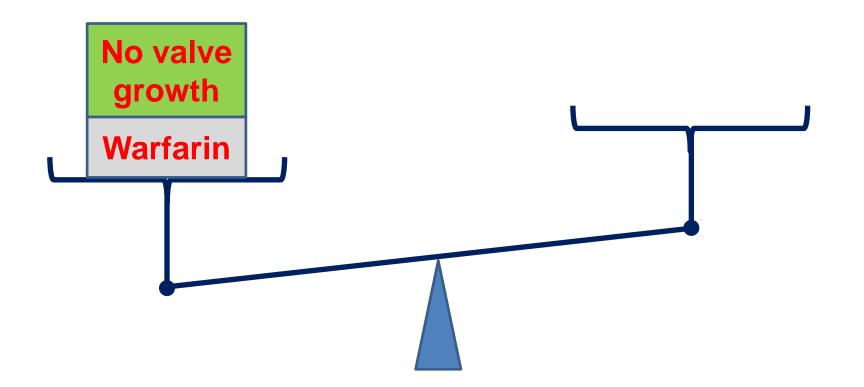

Echocardiographic findings

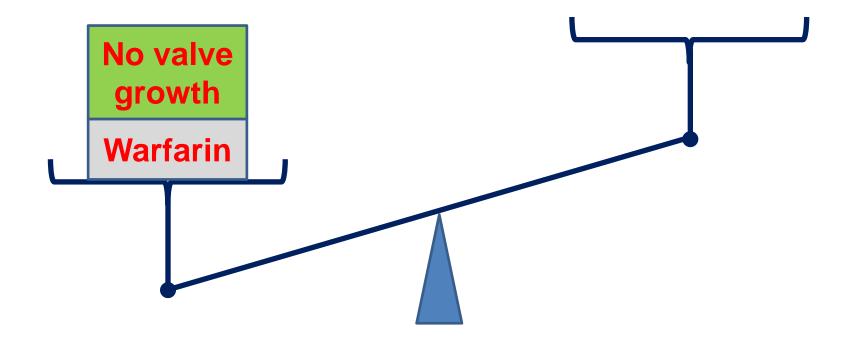
	Preoperative	Postoperative (18m)
LVOT velocity	4 m/sec	2.1 m/sec
AR	II / IV	-
MR	trace	trace
TR	trace	trace
LVIDd	48 mm	45 mm
LVIDs	30 mm	20 mm
LVEF	68 %	85 %
LVDEV index	74 ml/m²	56 ml/m²
LV mass index	85 g/m²	73 g/m²

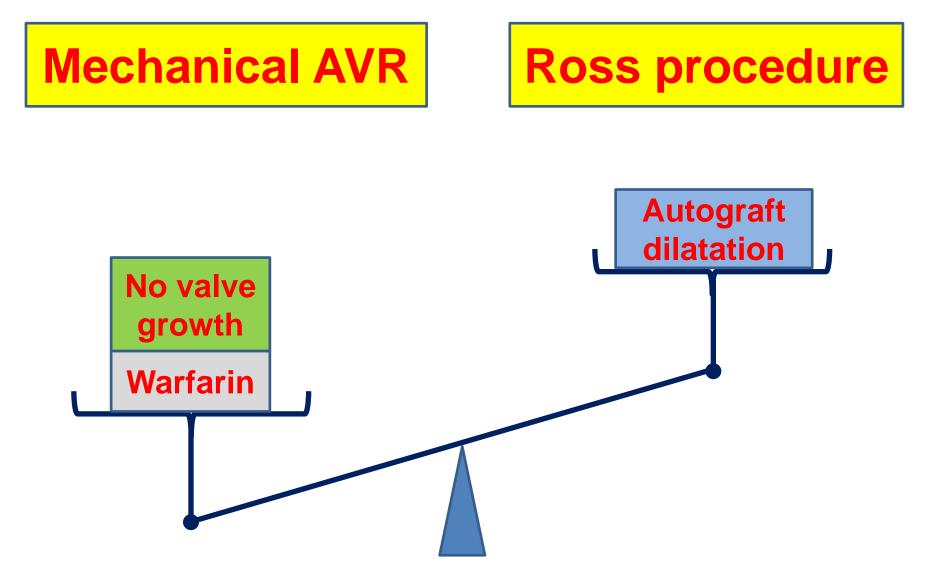

Case

• 15-year-old boy with bicuspid AV
• Severe AR with moderate AS
AVR with mechanical valve

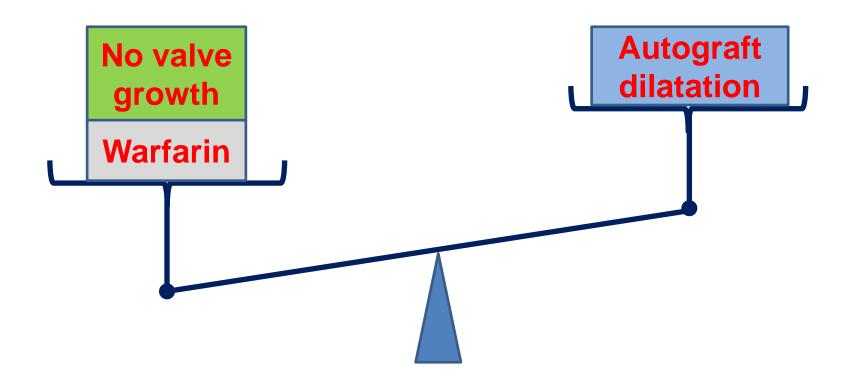

Mechanical AVR

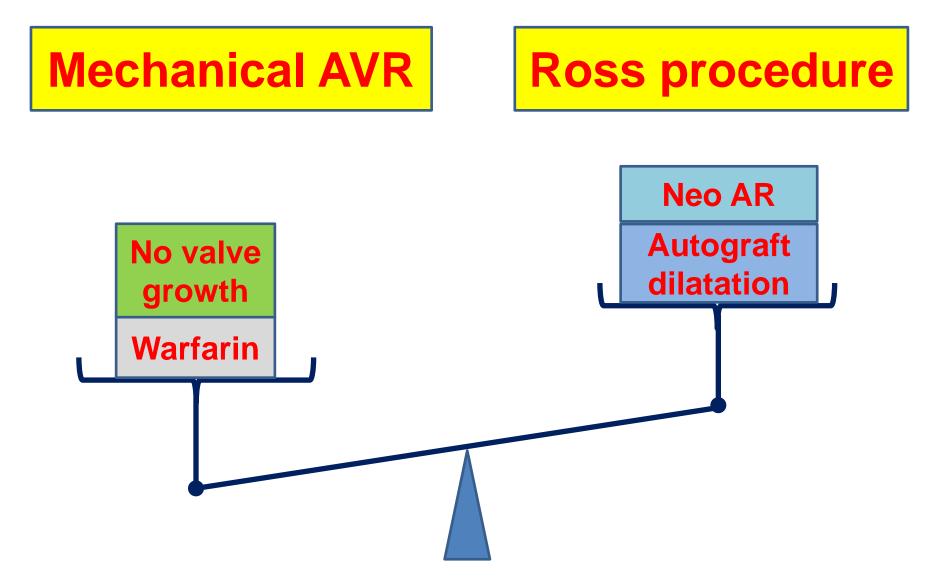

Mechanical AVR

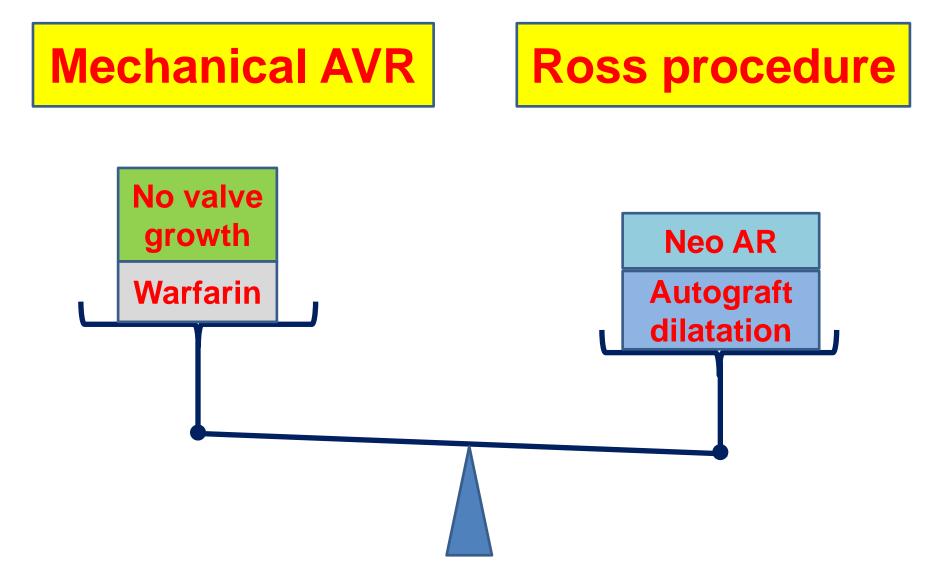

Mechanical AVR

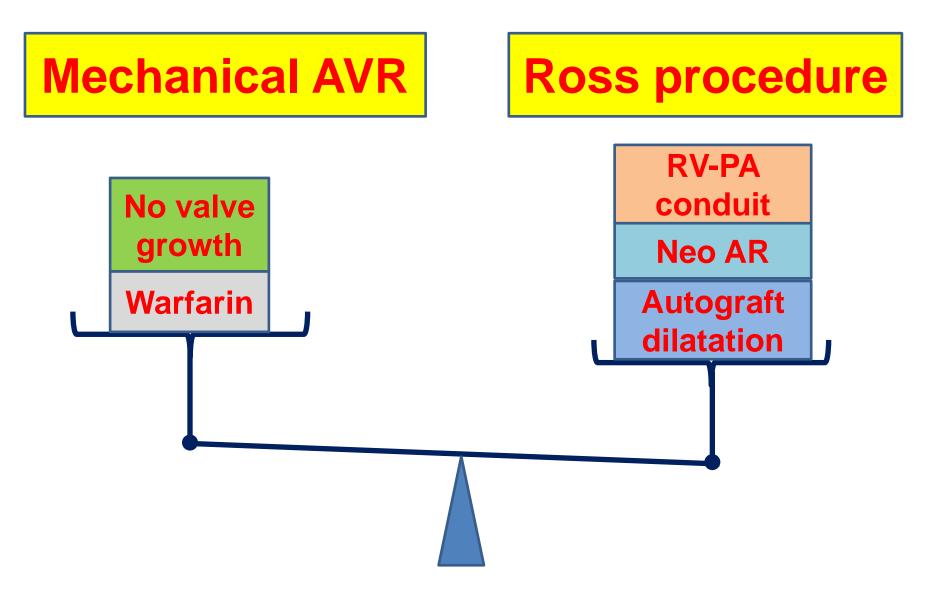


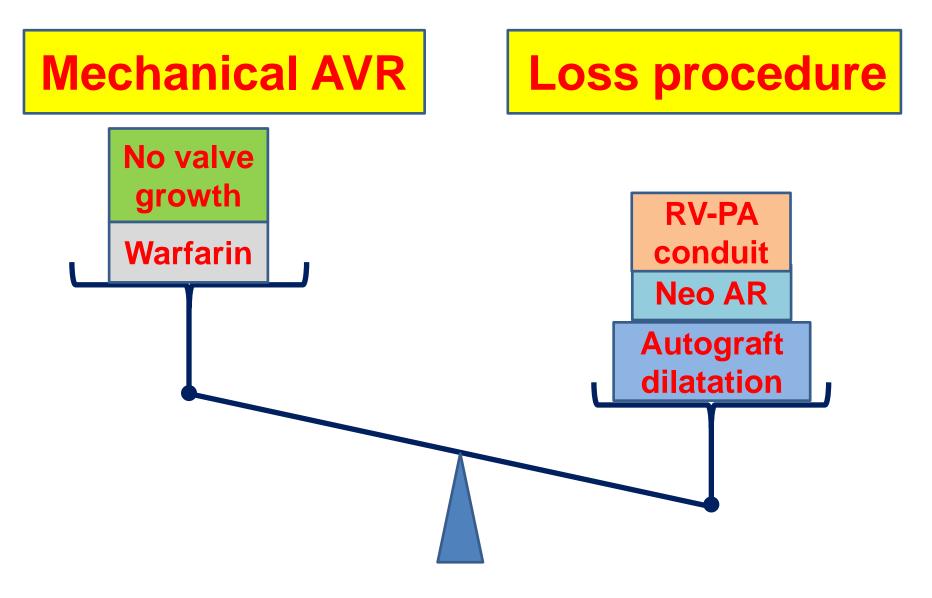
Mechanical AVR




Mechanical AVR






Mechanical AVR

